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We compare the two-dimensional voter model with approximate theories for 
spinodal decomposition. The cluster size distribution and the short-time 
dynamics of the voter model are studied by means of a Monte Carlo simulation. 
The time-dependent structure factor and the long-time scaling of the voter 
dynamics are known analytically. 

KEY W O R D S :  Voter model in two dimensions; spinodai decomposition. 

1. I N T R O D U C T I O N  

We accidentally came across a striking similarity between what on the 
surface would appear to be completely different systems. In Fig. lb 
we show subsequent instantaneous configurations of a two-dimensional 
Lennard-Jones fluid from a molecular dynamics simulation by Koch 
et al. ~1) The fluid is quenched to low temperatures at coexistence. As time 
proceeds, the fluid clusters into a stable low-density (gas) and high-density 
(fluid) phase--the standard setup for spinodal decomposition. In Fig. la 
we show the Monte Carlo simulation of a stochastic Ising model, known as 
the voter model,  (21 by Cox and Griffeath. (3) The system is started in a 
random configuration of spins. For long times it approaches either all spins 
up or all spins down, each with probability 1/2. 

Spinodal decomposition (nucleation, metastability, etc.) has been 
studied intensively for many years and is by far not yet a closed chapter of 
physics; see the recent reviews in refs. 4-7. To complement experiment and 
theory, very long runs on kinetic Ising models have been carried through. 
Now, the distinguishing feature of the voter model is its solubility. Just as 
for the one-dimensional Glauber dynamics, the time-dependent correlation 
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functions can be obtained in closed form. As is demonstrated in Fig. la, the 
voter model displays spinodal decomposition similar to more realistic 
systems. For us these were reasons enough to give a closer look at the 
voter model, in particular, to compare it with standard theories of spinodal 
decomposition. 
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(a) (b) 
Fig. I. (a) Instantaneous configurations of the voter model at 50, 450, and 1250 Monte 
Carlo time steps. Reprinted from Cox and Griffeath. (3) (b) Instantaneous configurations of a 
two-dimensional, classical Lennard-Jones fluid. The temperature is kept constant. The times 
are measured in picoseconds corresponding to argon just above the triple point. Reprinted 
from Koch et  al. (1) 
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We explain the voter dynamics and its solution in Section 2 and 3. In 
Section 4 we review the scaling theory of Cox and Griffeath. Their 
approach could be of interest also for other systems. Short-time dynamics 
and cluster size distributions are studied numerically in Section 5. 

A mean-field-type approximation to spinodal decomposition is 
equivalent to the diffusion of a particle in a bistable potential starting at 
the unstable equilibrium point. Various approximate theories for the 
approach to the stable equilibria have been proposed. Van Kampen found 
an exact solution for a particular choice of the bistable potential. (8) This 
solution serves as a useful check on the theories. In the same spirit we hope 
that the voter model will provide further insight into the complicated 
kinetics of spinodal decomposition. 

2. T H E  V O T E R  M O D E L  

We consider spins on a simple hypercubic lattice with lattice constant 
a. (There is no difficulty in extending the theory to other lattices.) Distan- 
ces are measured in units of a, which amounts to setting a = 1. The spin at 
site x, x ~ Z  d, takes values _+1, i.e., a ( x ) =  +1. A spin configuration is 
denoted by a={a(x) lxsZd} .  The voter dynamics is given by the 
following rule: if at a given site x the spin a ( x ) =  1 ( - 1 )  and if all 
neighboring spins are up (down), then a(x) does not flip; if one of the 
neighboring spins is down (up), then a(x) flips to - 1  (+1)  with rate 2/2d; 
if two neighboring spins are down (up), a(x) flips with rate 22/2d; etc. The 
name "voter" comes from interpreting + as yes and - as no. The current 
opinion changes then according to the opinions of nearby friends. 

Let cx(a) be the rate for the spin at x to flip when the spin con- 
figuration is a. Then, in general, the (backward) master equation of the 
stochastic dynamics reads 

d 
~ f,(a)= Lf,(a) (2.1) 

with generator 

Lf(a) = ~ ex(a)Cf(a x) - f ( a ) ]  (2.2) 
x 

Here ~-~ denotes the spin configuration a with the spin at site x flipped, i.e., 
aX(x)= -a(x)  and aX(y)=a(y) for y~x .  The formal solution to (2.1) 
reads 

f~(a) = eL~f(a) = ~ eL'(a, a') f ( # )  (2.3) 
C7' 
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and defines the probability of the configuration or' at time t given that the 
initial configuration is ~r. Here eLt(cr, ~') is the transition probability. 

The voter dynamics is a particular case of a general class of exactly 
soluble models constructed in such a way that L applied to some function 
f does not increase its degree. Let us first consider just linear functions, 
such as f(cr) = ~(z). Clearly, for Lf to be linear, too, the flip rates have to 
be of the form 

cx(cr)=a(x)+~(x)[ ~ g(x, y) cr(y)l (2.4) 
i ~-~c 

Here a(x) and g(x, y) are as yet unspecified coefficients. Physically, we 
would impose translation and rotation invariance. We also require spin-flip 
symmetry. Then, in the case of short range interactions, the flip rates 
become 

<~(a) =)~ [ 1 -  7 ~y , ,~  ~ , _  1 ~(x) a(y)] (2.5) 

[TJ ~< 1. The 2 sets the overall time scale. The significance of 7 will become 
clear in a moment. For 7 = 1, (2.5) are the flip rates of the voter model. 

Physically, an important general constraint on the flip rates is that 
they should satisfy detailed balance. This means that, in equilibrium, a 
given history of spin flips and the time-reversed history have the same 
probability. This property is, so to speak, inherited from the true 
microscopic dynamics. Now, for dimension d =  1 the flip rates cx(~) of (2.5) 
are identical to the one of Glauber {9) with 7 = tanh/~, where/3 the is inverse 
temperature. Therefore, the equilibrium state is the nearest-neighbor Ising 
model and detailed balance holds. Unfortunately, for d~> 2, there is no way 
to satisfy detailed balance. In this sense the flip rates (2.5) are unphysical. 
Why bother, then? Our philosophy here is to trade detailed balance against 
exact solubility. We believe that the voter model, although lacking detailed 
balance, still provides some insight into' the mechanism of spinodal decom- 
position. 

The exact solubility of the voter model can be seen most directly by 
considering the hierarchy of time-dependent correlation functions. Let us 
work out the first two equations in the hierarchy, 

dt<a(x)>'=22 7 2 d e . r e l = l [ < ~ ( x + e ) > ' - < ~ ( x ) > ' ]  (2.6) 

dt <a(x) a(Y)>,=22 7 ~ [<a(x+e)~(y)>, 
e ,  le l  = 1 

+ <a(x) ~r(y+e)>,-2<a(x)cr(y)>,]~ (2.7) 
) 
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with (a(x) cr(x)),=l.  The average, ( - )~ ,  is with respect to the dis- 
tribution of spins at time t. Clearly, the hierarchy of correlations decouples. 

For Hamiltonian dynamics a decoupling of the BBGKY hierarchy is 
equivalent to independent particle motion. This property does not hold for 
stochastic dynamics, however, as can be seen from the second equation. Let 
us think of x, y as positions of "particles." Then, if they are apart, they 
move independently according to the dynamics given by the first equation. 
If the particles are next to each other, then, because of (~(x)  ~ (x) ) ,  = 1, 
some terms in (2.7) degenerate, which corresponds to an interaction. On 
the level of the correlation functions this interaction reflects that we are not 
just studying the motion of independent spins. 

Equations (2.6), (2.7) generalize to n-point functions. Rather than 
write down the appropriate linear equation, it is more instructive to give, in 
a way, its solution. We first discuss the case "/= 1. We want to compute 
(1-[~=1 cr(xj)),, where all xj are distinct. For  this purpose we consider n 
random walks xj(t), j =  1,..., n, on the lattice Z a. They start at xj, i.e., 
xj(0) = x~, j = 1, 2 ..... n. The random walkers jump with rate 2/d to nearest 
neighbor lattice sites. The random walkers are not independent. Rather, 
when jumping on top they annihilate each other, i.e., both walkers dis- 
appear. At time t only the walkers with label j ~ A ( t ) c  {1 ..... n} survive. 
Note that A(t) is a random set. A(t) empty corresponds to no walker 
present at time t. The n-point correlation function is then given by 

Ij~=IO'(Xj)tr~-E(IjeAI~(t,(Y(Xj(I2))I) ( 2 . 8 )  

On the right hand side, ( - )  refers to the average in the initial (time 
t = 0) state and E is the average over all annihilating random walks. 

For  y < 1, (2.8) has to be changed in such a way that each walker 
jumps with rate 27/d and the path of each walker is weighted with the 
exponential e x p [ - t 2 2 ( 1  - 7 ) ] ,  where t is the time of the walk. 

Equation (2.8) gives a handle on the steady states of the voter model. 
We start the system in a homogeneous state, where spins are independent 
and have an average magnetization m. Then (2.8) simplifies to 

,/ a(xj = E(m IA('lh) (2.8') 
j t 

where ]A(t)l is the number of elements in A(t). 
Let us again first consider the case 7 = 1. Since, if all neighbors agree, 

the flip rate is zero, once the system has formed a large cluster, it may 
resolve only through flips at the boundary. For  dimensions d =  1 and 2 the 
growth dominates: As t--* Go in the steady state, all spins are up with 
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probability �89 + rn) and down with probability �89 - m ) .  The mathematical 
reason behind this is that two walkers will meet and hence annihilate each 
other with probability one. Therefore [A(t)l = 0 for n even and ]A(t)] = 1 
for n odd as t ~ oe. On the other hand, for dt> 3, two walkers have a finite 
probability to miss each other. The voter model then has a one-parameter 
family of steady states, labeled by the average magnetization. By (2.8'), the 
steady-state covariance is 

< [ a ( x )  -- m ]  [o- (y)  -- m ]  )~. 

= (1 - m  2) Prob{walkers x(t) and y(t), x(0) = x, 

y(0) = y, will meet at some time} (2.9) 

Thus, for d~>3 the voter model maintains nontrivial steady states. 
Opinions do not become unanimous. This, at first sight rather surprising 
feature, triggered a fairly detailed study of the voter model. (2) In fact, the 
large-distance behavior in the steady state is that of a Gaussian, massless 
free field with covariance 1/k 2 in Fourier space. (1~ 11) 

If b'l < 1, there is no mechanism to maintain large clusters. There is 
only one steady state with rn = 0. From (2.8') the two-point function in the 
steady state may be read off. We denote by p(x, t) the probability for a 
single random walker who starts at x to be absorbed at the origin at time t. 
The nearest neighbor jump rate of the walker is 227/d. Then, in the steady 
state, 

(G(x)>,=0 

<a(x) a ( y ) ) s =  d te - t2 ; (1- l )p (x - -  y, t) (2.10) 

The static structure factor is 

1 
e ~~ < a(O) a(x) )~, ~ 1 + k 2 [7/( 1 - y) d] (2.11 ) 

x 

for small k. Therefore, the correlation length equals [ 7 / ( 1 - y ) d ]  t/2 and 
diverges as ~ --* 1 . 

We conclude that for d~>3 the voter model ( 7 = 1 )  is critical. The 
anomalous dimension is r /= 0. A bit of further work shows that the critical 
dynamical exponent is z = 2 .  (121 The critical behavior is mean field. The 
factor 1 -;~ regulates the distance from the "critical point." 

However, for dimension d = 2 ,  the voter model exhibits spinodal 
decomposition characteristic for "low" temperatures. For  long times the 
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system decomposes into large droplets of up spins and large droplets of 
down spins. The goal of this paper is to understand the decomposition 
process on a quantitative level. 

3. T H E  T I M E - D E P E N D E N T  S T R U C T U R E  F A C T O R  

We focus now on the voter model in two dimensions. We have already 
set the lattice constant a = 1. Similarly, we measure time in units of the 
inverse flip rate 2 -1, which amounts to setting 2 = 1. Our expressions then 
look dimensionally wrong. It is a simple matter, however, to reintroduce 2 
and a at the appropriate places. First we compute the exact structure factor 
S(k, t) and compare it with the standard scaling theories for spinodal 
decomposition. 

We assume that initially spins are independent with zero 
magnetization, ( a ( x ) ) =  0. Then also at time t 

( , ~ ( x ) ) ,  = o (3.1) 

The two-point function (a(x)a(y)) t  depends only on the difference 
x -  y. We define the time-dependent structure factor by 

S(k, t) = ~ eikXS(x, t) = ~ eikX(a(x) cr(0) ) ,  (3.2) 
x x 

with k e F - n ,  n] 2, the first Brillouin zone. In (2.8'), specialized to n = 2, we 
have either A( t ) =  {1, 2} or A(t)=~b. In the first case (~(xl(t))a(Xz(t))) 
= 0. Therefore, ( a (x )  a (0) ) r  equals the probability for two random walkers 
who start at x and 0 to annihilate each other before time t. We go over to 
relative distance between walkers. It moves as a single random walker on 
Z 2 with doubled jump rate 22/d= 2 = 1. The random walk is absorbed 
when hitting the origin. Therefore 

S(x, t) = Prob{x(0) = x; x(s) = 0 for some time s, 0 ~ s ~< t} 

= probability of absorption before time t (3.3) 

The absorption probability is not known in closed form. 
It is advantageous to rewrite (3.3) in a slightly different form. Let L be 

the generator for the random walk with ansorption at the origin. Let Lo be 
the generator for the free random walk, 

Lof(x)= ~ [ f ( x + e ) - f ( x ) ]  (3.4) 
e ,  je l  = 1 

8 2 2 / 5 3 / 1 - 2 - 1 9  
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By first-order perturbation 

Now, 

fo eL~=eLor + dseLO(,-S)(L_Lo)e L~ 

in terms of the generator the absorption probability in (3.3) is 

(3.5) 

1 -  ~, eL'(X, y) (3.6) 
y:~O 

Combining (3.6) with (3.5), we obtain 

S(x, t) = eL~ O) + 2 ds eL~ O) p(t--  S) (3.7) 

with 

p(t) = ~ eL'(e, y) (3.8) 
y#O 

lel = 1. The x dependence is only in the free walk. We recognize p(t) as the 
survival probability at time t for a random walk with absorption at the 
origin starting at a site right next to the origin. For large t, (13) 

p(t) ~ ~z/log t (3.9) 

Therefore, for long times and sufficiently small k the structure function is 
given by 

S(k, t) = e ~k2 + 2~ fods e-~k2 log(t - s) 
(3.10) 

It is understood that for ( t - s )  small, the logarithm should be modified. 
The properties to be discussed are independent of the precise short-time 
behavior. 

For systems with a nonconserved order parameter, such as the Ising 
antiferromagnet and certain disorder-order transitions, as a sort of 
empirical evidence the normalized structure factor 

~;(k' t )=S(k '  t ) /  fBz dk k2S(k' t) (3.11) 

is of scaling form, 

S( k, t)= ~Co( t ) -a F( I kl/~Co( t ) ) (3.12) 
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at least with a weakly time-dependent scaling function F, (14'15) The 
maximum of k2~;(k, t) turns out to be a convenient measure of the 
coarseness of the clustering. (16) One finds that this maximum tends to zero 
proportional to ~co(t ). The Langer-Bar'on-Miller theory predicts a linear 
growth of S(0, t). (17) 

It is amazing that the structure factor of the two-dimensional voter 
model follows precisely the pattern set forth by phenomenological theories. 
The characteristic length scale grows as 

tOo(t) -1 - ~ (3.13) 

Let us first verify the scaling ansatz. We note that the normalization 
factor is 

iB 4n (3.14) dkkZS(k ,  t )=  - ~ IS(e, t ) - S ( O ,  t)] =4p(t)~log----- z 
Z e ,  leL = 1 

Therefore 

Is(k, t )  logt e_~2,+ I i k2, I - - due  " (3.15) 
t ---4-~- 2k2t 0o 1 + [log(1 -u /k2 t ) / log  t] 

For large t the first term is negligible and the second term, considered as a 
function of w 2= k2t, becomes time independent. Thus we obtain the exact 
scaling function 

du e u = - -  (1 - e-~'2) (3.16) F( w ) = J ~o 2w 2 

In Fig. 2 we compare the scaling function F(w) with the true structure 
factor for various times. With the exception of short times, scaling is well 
satisfied. 

In Fig. 3 we plot the maximum of kZS(k, t) as a function of t. It folows 

the expected 1/x/t- behavior. 
Without any approximation 

~(0, 0 = 2 - ~  dsp(~) (3.~7) 

Its time derivative is approximately 

~ S ( 0 ,  t ) = ~  1+ t d s l o g s  

which implies an essentially linear growth of S(0, t). 

(3.18) 
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Fig. 2. 
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Fig. 3. The maximum of k2S(k, t) as a function of time t. The slope is -0 .5 .  
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4. THE SCALING THEORY OF COX A N D  GRIFFEATH 

In a beautiful piece of work, Cox and Griffeath (3) study the clustering 
of the two-dimensional voter model for long times. It should be most 
instructive to analyze physically more realistic models of spinodal decom- 
position along similar lines. 

The basic idea of Cox and Griffeath is to consider block spins, with 
however, a size which depends on time. Let A(c~) be the square centered at 
the origin with sides of length t ~/2, 0 < c~ ~< 1. We define the block spin 

1 
B ' ( c 0 -  IA(d)l y, ~r,(x) (4.1) 

xeA(~) 

Here IA(~)[ = t ~ is the number of points in A(e) and a, is the (random) 
spin configuration at time t. Clearly, [Be(s)[ ~< 1. We are interested in the 
distribution of the block spin for large t; in particular, in how it depends on 
the power ~. Let us first discuss the extreme cases: If c~ = 0, then the block 
size is of order one. Therefore, we expect to find either Bt(0)= 1 or 
B,(0) = - 1  each one of them with probability 1/2. For  an initial state with 
magnetization m the probabilities would be �89 + m) and �89 m). On the 
other hand, if c~ ~> 1, i.e., if the side length grows faster than ,,/7, then the 
block typically contains many clusters and B , ( e )=  m with probability one 
as t ~  oo. The borderline c~= 1 follows from considering ( [ B , ( ~ ) - m ]  2) 
and using (3.7). So what about the intermediate values of ~? 

The answer comes out in a surprisingly neat form. Let us define the 
Fisher-Wright difussion process. It lives on the interval [ - 1 ,  1] and is 
governed by the backward generator 

l 0 2 

Lf(w) =-~ ( 1 -  wZl ~w2 f (w ) (4.2) 

,w[ ~< 1. Diffusions of this type come up in genetics and have been studied 
extensively. (18'19) Let W, denote the diffusion process corresponding to 
(4.2). W, diffuses in the interval [ - 1 ,  1] with a spatially dependent 
diffusion coefficient which vanishes linearly at the boundary. Still, W, can 
reach the boundary, where it is absorbed. In fact, W, reaches the boundary 
with probability one. Therefore, as t ~  oo the distribution of W, is 
�89 + m) 6(w - 1) + �89 - m) 6(w + 1) if initially W 0 = m. The probability 
distribution at time t is known in terms of Gegenbauer polynomials. (2~ A 
time plot for the symmetric case is given in Fig. 4. There are two time 
regimes. Initially diffusion spreads out to uniformity. Then the uniform 
density decreases through absorption at the boundary. In our units the 
break time is about r = 3/4. 
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To return to the voter model, Cox and Griffeath prove that, in 
distribution, the block magnetization has the limit 

lim B, (e )=  Wlog(1/. ) (4.3) 
t ~ o o  

Clearly (4.3) reproduces the extreme cases. For e ~ 0 ,  log(i /e)-- ,  oc and 
the distribution of B,(e) is concentrated at +1,  whereas for ~ 1, 
l o g ( l / e ) - ,  0 and the distribution is concentrated at 0 (in general at m). A 
typical cluster size is linked roughly with the break time z. If we set 

= 3/4 = log(l/e),  then e = 0.5 and the characteristic cluster size increases 
as .,,/t, consistent with our results for the structure function. 

The convergence in (4.3) is understood in the sense that also the joint 
distribution of B,(e), B,(e') converges to the joint distribution of W~og(ll~l, 
W~og(II~, 1 (and similarly for higher correlations). Thus, the correlations 
between various cluster sizes are governed by the Fisher-Wright diffusion, 
too. 

Equation (4.3) shows that the characterization by a single exponent is 
rather elusive. For large t there are clusters of scales t ~, 0 < ct ~< 1. These are 
weighted, however, by the distribution of Wlog(1/0~ ). 

v 

0 1 

7 

W 
Fig. 4. The probability distribution of the Fisher-Wright diffusion for various times. The 

initial distribution is p0(w)= 6(w). 
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An obvious criticism to the above construction is that the block 
magnetization cannot capture the intricate geometric structure of clusters. 
True enough. But also the Ising model at the critical point has complicated 
spin clusters. Still, we are able to discuss the critical behavior through sim- 
ple behavior of measurable quantities. The issue is how fine-grained a detail 
we need in order to understand and to describe spinodal decomposition. 

5. CLUSTER SIZE D ISTRIBUTION A N D  S H O R T - T I M E  
D Y N A M I C S  

The two-point  function reflects only a sort of average behavior. A 
more detailed structural information is provided by the number of clusters 
nt(t) of size l at time t. To study it, we have to resort to a Monte Carlo 
simulation of the voter model. 

We use a 100x 100 square lattice. The starting configuration is 
random with 50% spin up. The voter dynamics corresponds then to a 
symmetric quench to low temperatures. The cluster size distribution is 
determined by an algorithm described in ref. 21. 

The half-filled lattice is below the (independent) percolation threshold. 
Therefore, initially the cluster size distribution decays exponentially, 

nl(O) '~e  1/~ (5.1) 

with ~ -~ 30. Under the voter dynamics, in a few flips per spin, the cluster 
size distribution builds up a power law behavior, 

n~(r)~-I  -~ (5.2) 

r,.o 0_ 2 
a) 

�9 

~_ 10  -S 
o 

(1) 
c~ 
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~Q 

O 
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O 
IIm'mll 

10 ~ 10 3 

c L u s t e r - s i z e  

Fig. 5. Clus ter  size d i s t r ibu t ion  for 200 MCS. 
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for large l (Fig. 5). The exponent ~ varies somewhat with time, but does not 
show any systematic time dependence at least up to 1000 MCS (Monte 
Carlo time steps) (Fig. 6). We expect that the right-hand side of (5.2) 
should be supplemented by a time-dependent cutoff function which sup- 
presses the occurrence of clusters of a linear extension larger than some 
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suitable correlation length. No such cutoff could be meaningfully extracted 
from our data. 

Another interesting feature is the almost instantaneous appearance of 
very large percolating clusters (Fig. 7). These clusters grow until about 
20MCS, after which they break up and continue to grow later on 
separately. In the early stage of relaxation, the voter model exhibits a 
transient percolation structure. A similar phenomenon was observed in 
ref. 22. 

Typical percolation clusters have a fractal dimension smaller than the 
dimension of the underlying space. For the voter dynamics we have 
measured the fractal dimension of the largest cluster as a function of time. 
If N~ denotes the number of squares of area (100e) 2 needed to cover the 
cluster, then its fractal dimension (more precisely its capacity dimension) D 
is defined by 

N ( e ) ~ -  ~ D (5.3) 

for 8~  1. In the early stage D_~ 1.7 and D tends to 2 for longer times 
(Fig. 8). Desai and Denton (23) also observed very large fractal clusters in 
their molecular dynamics simulation of a two-dimension Lennard-Jones 
fluid. They determined a fractal dimension of 1.5 at the early stage of the 
spinodal decomposition. 

O 

tg l  
e'-" 

a /  

E 

2.0 

, 4 . -  

U 

t , . .  

1.5 

+ 
+ 

4. 
4- 

++J 

. . . . .  . . . . . . .  , 2  . . . . . . . .  ,3. 
10 10 IU 

t 
Fig. 8. The fractal dimension of the largest cluster as a function of tame. 
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